
Towards a complete SCM Ontology - The Case of
ontologising RosettaNet

Armin Haller
DERI

National University of Ireland,
Galway

armin.haller@deri.org

Jedrzej Gontarczyk
DERI

National University of Ireland,
Galway

jedrzej.gontarczyk@deri.org

Paavo Kotinurmi
Helsinki University of

Technology
Finland

paavo.kotinurmi@tkk.fi

ABSTRACT
This paper presents a methodology to derive a Supply Chain
Management Ontology based on the RosettaNet specifica-
tion framework. A prototype to mechanically derive a core
ontology spanning all new Partner Interface Processes in
the RosettaNet framework is developed and its algorithms
to reconcile the ontology structure and to generate a proper
subsumption hierarchy are presented. We further present
how we designed and referenced outer layer ontologies we
analysed to be required to resolve the remaining disparities
in the core ontology. The resulting ontology framework en-
ables to more easily deal with different message structures
in dynamic Business-to-Business collaborations and thus en-
sures a better interoperability for the partners involved.

Categories and Subject Descriptors
D.2.12 [Software]: Software Engineering;
Interoperability[Data mapping]

Keywords
Supply Chain Management, RosettaNet, ontology engineer-
ing, Semantic Web Services

1. INTRODUCTION
Information and communication technologies are increas-

ingly important in the daily operations of organisations.
In the current networked business environment, most in-
formation systems need to interoperate with other inter-
nal and external information systems. Standards, such as
RosettaNet1, UBL [3] or ebXML [16], facilitate Business-to-
Business (B2B) integration. These standards support elec-
tronic commerce over existing Internet standards and lead
to cost and extensibility benefits.

RosettaNet is an industry-driven e-business process stan-
dard that defines common inter-company public processes

1See http://www.rosettanet.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2007, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

and their associated business documents. The most impor-
tant component in RosettaNet are Partner Interface Pro-
cesses (PIPs), containing a specification document, a set of
document schemas and message guidelines to help to in-
terpret these schemas. The document schemas of earlier
PIPs have been expressed using Document Type Definitions
(DTD), leading to expressivity and coherency issues [8, 7].

In this paper we focus on the 50 PIPs which are available
as XML schemas (XSD) in August 2007. Although a major-
ity of PIPs used in production systems are still specified us-
ing DTDs, all PIPs published after 2004 use XSDs. With the
introduction of XSD schemas the RosettaNet framework ex-
hibits a coherent modular design, instead of the monolithic
model caused by the use of DTDs. In the latter, the tech-
nical dictionaries and general purpose specifications such as
metrics, dates, freight codes etc. have been kept internal to
each individual PIP. This led to inconsistencies in the stan-
dard and caused the adoption to be difficult to maintain if
two partners used different versions of the same PIP.

In XSD-based PIPs types are coherently used through-
out the RosettaNet standard where each PIP references the
same schematic representation for similar information and
extends the schema when used in a different context. In its
current version RosettaNet recommends in most cases the
use of external standards, such as ISO coding standards for
countries and currencies. Such information was previously
specified in the monolithic model. However, these elements
are usually defined as tokenised strings with the values ei-
ther unspecified or merely syntactically restricted. The in-
terpretation of its usage is left up to the interpretation of
the individual implementing company. These issues are a
major source of incompatibility in the usage of a PIP, since
the relation between types (e.g. tokens) and their semantics
is not made explicit. We propose to ontologise the complete
RosettaNet specification to form a foundational model for
a general purpose Supply Chain Management (SCM) ontol-
ogy. We present a methodology how to mechanically derive
this ontology from the XSD-based PIPs and how semantic
relations and a proper ontology structure can be automati-
cally generated. We analyse the usage of different elements
throughout the RosettaNet specification and subsequently
through our generated core ontology and identify the most
likely remaining sources of heterogeneities. We propose a set
of outer layer ontologies to resolve these heterogeneities in
a dynamic SCM setting where partners can not rely on con-
tractual agreements to restrict the usage of token elements
(e.g. an agreement to only use metric types or USD in the
quoting).

The paper is structured as follows: first we give a brief in-
troduction to the Semantic Web technology stack required
to ontologise the RosettaNet specification and position our
work to related literature in section 2. We then motivate
our solution using an example RosettaNet Quote-to-Cash
process in section 3. Section 4 presents the ontology engi-
neering methodology, including the mechanical extraction of
a core RosettaNet ontology in section 4.1 and its algorithms
to reconcile the ontology structure and to generate a proper
subsumption hierarchy. We further present the outer layer
ontologies in section 4.2 we analysed to be required to re-
solve remaining heterogeneities in the core ontology. Section
5 discusses the generalisability of our proposed solution and
the issues companies face when applying such a solution.
We conclude in section 6.

2. BACKGROUND
In this section we give a short overview of the recent Se-

mantic Web initiatives, standards and languages. We fur-
ther present how these technologies have already been ap-
plied in other research efforts to more expressively define
business documents and standards.

2.1 Semantic Web technologies
The Semantic Web idea [2] and its accompanying tech-

nologies were introduced to express information not only in
natural language or in predominantly syntactical formats
such as HTML or XML, but in a way that it can be read
and used by software agents, to infer, find and integrate in-
formation more easily. Ontologies [10] represent a core pillar
of the Semantic Web idea, as they define a set of concepts
within a domain and the relationships between those con-
cepts. Although the current RosettaNet specification can
be thought of as a lightweight ontology, it is not represented
in a language which supports reasoning about the objects
within that domain.

Multiple standardisation efforts aim to define a framework
and parts of a so called Semantic Web layer cake, including
amongst others RDF(s) [13, 4] and OWL [15]. We have cho-
sen the Meta Model offered by the Web Service Modeling
Ontology (WSMO) [6] and its accompanying ontology lan-
guage (WSML) [5] to model and implement the ontology de-
scribed in this paper. The choice has been made on the fact
that we require a more expressive language than RDF(s),
but also a framework treating services as first-class citizen
in its meta model. However, although we have opted to use
WSML, the ontology could theoretically also be defined in
OWL.

The Web Service Modeling Language (WSML) [5] is an
ontology language offering a human readable syntax, as well
as XML and RDF syntaxes for exchanging data between ser-
vices. WSML clearly separates between conceptual and log-
ical expression syntaxes. The conceptual syntax is used to
distinctly model different conceptual aspects of WSMO such
as Web services, Ontologies, Goal and Mediators, whereas
the logical expression syntax is used for describing addi-
tional constraints and axioms. WSML consists of a number
of variants based on different logical formalisms. The dif-
ferent variants of the WSML correspond to different levels
of logical expressiveness and are both syntactically and se-
mantically layered.

2.2 Related Work
Anicic et al. [1] present how two XML Schema-based au-

tomotive standards, AIAG and STAR, are translated from
XML to an OWL-based ontology. Their methodology is sim-
ilar to ours although it uses a different base schema and is
formalised in OWL [15]. Our approach further identifies and
defines outer layer ontologies, but in overall the efforts are
complementary. Foxvog and Bussler [9] describe how EDI
X12 can be presented in the WSML, OWL and CycL on-
tology languages. The work focuses on issues encountered
when building a general-purpose B2B ontology. This work
provides a basis for mapping EDI concepts to our SCM con-
cepts and could serve as a complementary effort. Trastour et
al. [18, 19] augment RosettaNet PIPs with partner-specific
DAML+OIL constraints and use agent technologies to auto-
matically propose modifications if the partners use messages
differently. Their approach is related to our XSD to WSML
transformation methodology, but does not include a rich on-
tologisation as proposed in our outer layer ontologies. Hepp
[12] presents a methodology how to derive an ontology out
of an existing product classification standard. Their work
is complementary to our efforts and is indeed used in our
classification ontology.

3. MOTIVATING EXAMPLE
To show a typical supply chain process, we consider a

quote-to-cash process involving a buyer and multiple sellers
utilising B2B standards in the communication. Despite us-
ing standards, there is often a lot of heterogeneity as the
standards can be used differently.

Figure 1: Quote-to-Cash process

Figure 1 shows the complete quote-to-cash process with
one partner using RosettaNet PIPs. However, in the quot-
ing phase, there are typically many competing offers. The
products offered by different providers can also be substi-
tutable products that are replaceable to the initially quoted
products. The quotes and orders can arrive using differ-
ent measurement units and currencies. The best quote is
selected and actual orders are made. The shipment of the
products can occur in different lot sizes and the transporta-
tion method and equipment used constrain how the products

are shipped. After receiving the products the payment pro-
cesses are initiated. This typical quote-to-cash process cov-
ers many RosettaNet PIPs. These include quoting for price
and delivery details (3A1), making the actual order (3A4),
shipping the goods (3B2, 4B2) and handling payment (3C3,
3C6).

There are many B2B standards for SCM that specify the
needed business messages related to these processes. For
instance, RosettaNet PIP 3B2 Notify of Advance Shipment
carries logically similar information to UBL 2.0 Despatch
Advice. The information in such messages contains detailed
product level contents of the shipment, the delivery time
and other shipment information including product identi-
fication, shipment quantities and measurements. Listing 1
provides extracts of RosettaNet documents that still use dif-
ferent types in the PIP message for measurement, identifi-
cation and quoting information. Further, if companies use
different standards such as UBL and ebXML, they support
yet other ways how to represent logically similar informa-
tion. This introduces further challenges for the manufactur-
ing company that needs to be able to interpret the multiple
representations.¨ ¥

<!−−RosettaNet example 1−−>
<updi:ProductIdentification>

<udt:GTIN>55566677788899</udt:GTIN>
</updi:ProductIdentification>
<uuom:UnitOfMeasure>KIG</uuom:UnitOfMeasure>
%KIG short for Kilogram
<ume:FinancialAmount>

<ume:Amount>100</ume:Amount>
<ucr:Currency>EUR</ucr:Currency>

</ume:FinancialAmount>

<!−−RosettaNet example 2−−>
<updi:ProductIdentification>

<updi:ProductName>hammer</updi:ProductName>
<ulc:AlternativeIdentifier>

<ulc:Authority>Buyer</ulc:Authority>
<ulc:Identifier>6578489</ulc:Identifier>

</ulc:AlternativeIdentifier>
</updi:ProductIdentification>

<uuom:UnitOfMeasure>USP</uuom:UnitOfMeasure>
%USP short for US pound
<ume:FinancialAmount>

<ume:Amount>136</ume:Amount>
<ucr:Currency>USD</ucr:Currency>

</ume:FinancialAmount>§ ¦
Listing 1: Example RosettaNet message extracts

4. A COMPLETE SCM ONTOLOGY
In the following section we discuss the ontology engineer-

ing methodology we followed to create the RosettaNet core
ontology. We describe its main concepts and the key mod-
elling decisions taken and show how we approached the mod-
elling of the outer ontology layers, resolving the remaining
source of heterogeneities in RosettaNet as discussed in the
motivating example.

The process of developing a complete Supply Chain ontol-
ogy from RosettaNet schemas is carried out in two steps. (1)
We mechanically derive a core ontology, being a direct trans-
lation from XSD to WSML including a reconciliation phase
to hierarchically structure the ontology and to add a proper
subsumption hierarchy; (2) we analyse the RosettaNet spec-
ification and identify remaining sources of heterogeneity in
order to model and reference richly axiomatised ontologies,
forming the outer layer in our ontological framework.

4.1 Core layer
The consequent structure of the RosettaNet specification

allowed us to develop a methodology and tool for mechani-
cally deriving a consistent, lightweight core RosettaNet on-
tology. The prototype application allows us to update the
base ontology by applying changes to the application code
rather than to every single ontology fragment whenever a
correction is made to the RosettaNet specification (XSD
files) or a new feature is added.

4.1.1 Extract the Core ontology
The process of creating the base ontology is as follows:

1. The document header of the XSD file is parsed to con-
vert the list of referred namespaces directly to names-
paces in WSML.

2. The ontology itself is created and identified with the
the name of the originating XSD file. The XSD version
numbers become part of the target namespace defini-
tion in order to add semantic relations between differ-
ent ontology versions at a later stage.

3. The schema annotation nodes are transformed into
non-functional properties in the ontology.

4. Next, all stand-alone types (elements with no child
nodes referencing another type) are translated to sub-
concepts of their referenced types. All stand-alone
types are of type <xs:element>, whereas all top-level
<xs:element> tags represent stand-alone types. All
nodes referencing the namespace prefix tns belong to
the local namespace and can be omitted in WSML.

5. In a next step, all the remaining <xs:simpleType>
and <xs:complexType> are handled.

For all <xs:simpleType> definitions used to create a
new type based on restricting one of the XSD built-in
types, the mapping results in the creation of a con-
cept in the ontology with a type of the built-in type
in WSML. An axiom is added for possible value re-
strictions. However, WSML does not support pattern
constraints, thus we omit them in the translation. If
the <xs:simpleType> definition is based on a list of
other simpleTypes, the mapping results in the creation
of a concept with an attribute resulting from the trans-
formation of the list.

Complex types always map to a concept in WSML.
Sub elements with a simple built-in type are mapped
to attributes with the same built-in type. Sub ele-
ments with simple types that are not WSML built-ins
are mapped to attributes with the type of the mapped
simple type definition. A sub element that itself is
a complex type leads first to the creation of a cor-
responding concept as shown in listing 2. The XSD
sequence element, specifying that the child elements
must appear in a sequence, is ignored in the transla-
tion to its ontological schema, since structural restric-
tions are not the scope of an ontology. XSD choice
elements on the other hand are handled, since it re-
stricts instances to be of a particular type of the list
of types. We add a supporting axiom to the ontology.

¨ ¥
<xs:complexContent>
<xs:extension base=”uat:IdentifierType”>
<xs:sequence>

<xs:element name=”ProductName” type=”xs:string”
minOccurs=”0”>

<xs:element name=”Revision” type=”xs:string”
minOccurs=”0”>

</xs:sequence>
</xs:extension>

</xs:complexContent>

hasIdentifierType ofType extIdentifierType

concept extIdentifierType subConceptOf uat#IdentifierType
ProductName ofType (0 1) string
Revision ofType (0 1) string§ ¦

Listing 2: Complex extension type and its WSML
representation.

6. The final step concerns the reconciliation of the type
hierarchy. Although the type hierarchy in the cur-
rent RosettaNet specification is mostly coherent and
shares similar types throughout different PIPs, in sev-
eral cases some types not only share the name (in a dif-
ferent namespace), but also shares some elements. In
such cases we merged the types, determining the com-
mon elements and creating a parent concept, placing
it in the Universal namespace. With this concept, the
overlapping type definitions in the originating types
are removed and added as a sub-concept of the newly
created concept in the Universal namespace. This op-
eration greatly reduced the size of the specification
overall, while making it cleaner and more expressive
(subsumption relations) in its type hierarchy.

Following this simple transformation methodology we can
derive an extensive ontological framework. However, at-
tributed to the modular structure of the schema, the ad-
vantages of a mechanically derived ontology without adding
semantic relations is limited. Therefore our transformation
methodology includes the following steps to structure the
ontology documents and to automatically add a proper sub-
sumption hierarchy.

4.1.2 Reconciliation of the core ontology structure
RosettaNet’s original structure is based on namespaces.

Every data type is accessible through the namespace of the
schema document it belongs to. Moreover, schemas differ
by level of their accessibility.

• Schemas with general accessibility throughout all PIPs
belong to a class Universal.

• PIPs are organised into eight clusters, denoted by num-
bers (e.g. PIP3xx, PIP4xx), which are further broken
down into segments, denoted by letters (e.g. PIP3Ax,
PIP4Bx). For example, cluster 3 deals with Order
Management; it is divided into four segments including
for example PIP3A Quote and Order Entry. Accord-
ingly, schemas only shared between the members of a
cluster belong to groups called procurement, salesre-
porting etc. and shared classes, being shared by PIPs
in the whole segment.

• Schemas which can be accessed only by one PIP be-
long to the Interchange class (schemas of this class are
always used to define package-specific data types).

Although this grouping ensures a modular structure in
RosettaNet, it is not properly designed. First, the shar-
ing of schemas is achieved by including copies of every file
among the packages which as pointed out earlier can lead
to inconsistencies in the specification. Secondly, schemas
are a top-level structure and not grouped in any logical way
(other than in filesystem directories), making it impossible
to query for schemas belonging to a similar cluster, segment
or package.

In the ontologisation process we addressed these problems
so that one can query the ontology for cluster, segment,
package and PIP memberships. The process we followed is
as follows:

• First we regrouped the directory structure so that no
file exists in more than one copy.

• All ontological schemas of the same level of accessi-
bility are assigned to three top-level groups (univer-
sal, domain, interchange). Those groups further sepa-
rate schemas by their cluster/segment/package mem-
bership.

• Next, a domain group containing a procurement and
shared ontology with schemas/ontologies shared through-
out all PIPs and a cluster ontology including groups
of schemas used within different RosettaNet clusters,
such as Manufacturing and Logistics is added.

• Finally, a Universal ontology referencing all schemas
belonging to the universal namespace, and an Inter-
change ontology containing the interchange document
ontologies from the different PIPs are created.

4.1.3 Deriving a subsumption hierarchy
While parsing the Document Object Model tree we ap-

ply a simple language processing technique to identify com-
pounded words. RosettaNet uses compounded nouns through-
out the specification and many of them share similar types.
Thus, we search for the occurrence of its lexemes (the start
of a new lexeme in the specification can be easily identi-
fied by its capitalisation) as part of a compounded noun in
the type name. If we find multiple types, sharing a lex-
eme in its compounded names, we check their referenced
types. If the element references a similar type, a top level
concept with the respective part of the compound noun is
created and subclass relations to all occurrences of the com-
pounded word are added. Listing 3 shows an example of
such a generated concept hierarchy. RosettaNet includes
for example multiple quantity types, such as OrderQuantity,
ProductQuantity, ForecastQuantity, LeadTimeQuantity etc.
By applying this simple algorithm, only taking compounds
into account where Quantity is occurring at the right-hand
we derive ten elements with the same type and create the
concepts as shown in listing 3.¨ ¥

concept Quantity
hasNumericalValue ofType float

concept OrderQuantity subConceptOf Quantity
concept ProductQuantity subConceptOf Quantity
concept ForecastQuantity subConceptOf Quantity
...§ ¦

Listing 3: Concept hierarchy derived by lexical
analysis

Figure 2: Distribution of element occurrence

4.2 Outer layers
RosettaNet is a Supply Chain Management standard defin-

ing the message exchange patterns and the document con-
tent for Order Management, Quoting, Financial Review, In-
ventory Management etc. in the information technology,
electronic components, semiconductor manufacturing, tele-
communications, and logistics industries. However, informa-
tion exchanged in PIP documents spans multiple knowledge
domains. Since the documents are interpreted by different
parties in the collaboration, all information has to be uni-
formly understood. Since RosettaNet does not and can not
model all domain knowledge, such as the actual product and
partner identification, measurement types or currency types,
other specifications (ontologies) have to ensure the uniform
understanding of the elements within a message.

RosettaNet publishes only guidelines which standards to
use, but does not reference or integrate ontologies to ho-
mogenise their usage. Table 4.2 analyses the element occur-
rence in all of the fifty RosettaNet PIPs currently available
as XSD schemas. The table distinguishes between manda-
tory (left) and optional element occurrences (right) in the
schema.

ProductIdentification 317
UnitOfMeasure 295
FinancialAmount 267
ProductQuantity 254
MonetaryAmount 201
PartnerIdentification 199
ProcessRoleIdentifier 196
AlternativeIdentifier 193
Identifier 179
DatePeriod 167

Table 1: Occurrence of el-
ements considering cardi-
nalities

ProductQuantity 490
DatePeriod 469
ProductIdentification 444
FinancialAmount 381
UnitOfMeasure 379
ContactInformation 353
BusinessDoc.Ref. 349
MonetaryAmount 333
PercentAmount 288
Measure 252

Table 2: Occurrence of el-
ements omitting cardinal-
ities

The analysis shows power law distribution characteristics
(cf. figure 2) with few elements used often and many ele-
ments used only few times.

The rank of the individual element in the two datasets is
quite similar. The coefficient of variation (cv) of the ranks
of the same elements in the dataset considering cardinali-
ties is cv = 0.2588 compared to cv = 0.2459 in the dataset
omitting the element cardinalities. Although the ranking
result are almost similar, it is safe to assume that the el-
ement occurrence taking cardinalities under consideration
is closer to the actual usage of the elements in individual
XML instances. In fact a positive cardinality still does not
guarantee the actual usage of an element, because its usage
context might be of zero cardinality. However, the schema
occurrences of mandatory elements is a reliable indicator of
the actual usage and thus we will analyse the top ranked
elements taking their cardinality into account.

Based on this metric we start to design the outer layers
of a SCM ontology. The element with the highest number
of occurrences, ProductIdentification, similarly to the sixth
most used element, the PartnerIdentification, references one
of the following identifier types: uat:identifiertype, ulc:
AlternativeIdentifier, udt:GTIN, udt:DUNS, udt:DUNS-

Plus4 and udt:GLN. The role of these identifiers is to de-
scribe products (GTIN), companies (DUNS) and locations
(GLN or DUNSPlus4 for company location) uniquely. When,
for example, ordering a hammer, it is easier to refer to
an identifier, such as the 14-digit GTIN “55566677788899”,
than specifying “Tool, hammer, handtool, Fiskars, ...” in
every business message. Alternative identifiers can also be
used, typically for buyer identification. Using differing iden-
tification schemas creates a mapping challenge where ontolo-
gies can help to state similarity between different identifiers
for a product. Since an n-to-n mapping between identifiers is
unfeasible, we propose to map to an existing product classifi-
cation such as the eCl@ss classification (code “AAA374002”
for hammer). By specifying this semantic detail and refer-
ring to the existing eClassOwl-ontology2 [12], it is possible
to provide information on similar products, such as hammers
produced by other manufacturers. Further benefits materi-
alise when respective UN/SPSC classifications are mapped
to eCl@ss categories. This enables companies that map their
identifier codes to a category to provide substitutable prod-
ucts and increase their chance of realising sales. Similarly,
the current location identifiers can be mapped to location
ontologies and thus provide routing services for the ship-
ment companies. Currently used dummy identifiers do not
help to make any intelligent decisions.

The second most references element, UnitOfMeasureType,
extends the UnitOfMeasureContentType with a list of 367
measurement types. They are directly modelled and con-
strained in RosettaNet as tokenised strings. All the inherent
relations between the individual tokens are left unspecified.
First, we identified for each tokenised string in the XSD
Schema its unit type class membership in the Suggested
Upper Merged Ontology (SUMO) [14]. SUMO is a richly
axiomatised formal ontology created by the merger of mul-
tiple existing upper-level ontologies. SUMO is divided into
eleven sections whose interdependencies are carefully docu-
mented. We are mostly interested in classes from the base
ontology, numeric and measurement layer. Other parts of
the ontology include among others, temporal, process and
class theories. All unit types in the 367 token values can
be related to the PhysicalQuantity class in SUMO, which

2See http://ontologies.deri.org/eclass/5.1/#C AAA374002

itself subclasses ConstantQuantity, FunctionQuantity and
UnitOfMeasure. By using SUMO we derive foundational re-
lations, such as the equivalence of 1 litre to 1 cubic decimetre
and the relation that 4.54609 litres are equal to 1 United-
KingdomGallon, all facts defined in the axiom schemata of
SUMO. Listing 4 shows the concept definitions in the on-
tology and its related classes in SUMO. PoundMass and
Kilogram in SUMO are second level subclasses of Product-
Quantity.¨ ¥

concept ProductQuantity subConceptOf sumo#ProductQuantity
concept PoundMass subConceptOf sumo#PoundMass
concept Kilogram subConceptOf sumo#Kilogram§ ¦

Listing 4: UnitOfMeasureTypes in the RosettaNet
ontology

Next, we identified common types in the tokens and mod-
elled them as concepts in the ontology. Examples of similar
tokens are a 10 Kilogram Drum, a 100 Pound Drum and
a 15 Kilogram Drum. Listing 5 shows the first two tokens
in its XSD Schema definition and listing 6 shows its repre-
sentation in our ontology. We identified the concept Drum
as being member of a FluidContainer in SUMO and it in-
herits similarly to all other converted unit types the hasTo-
kenValue, hasUnitSize and hasUnitType attributes from its
parent concept (Quantity).

¨ ¥
<xs:simpleType name=

”UnitOfMeasureContentType”>
<xs:restriction base=”xs:token”>
<xs:enumeration value=”1KD”>
<xs:annotation>
<xs:appinfo>
<urss:Definition>

10 Kilogram Drum.
</urss:Definition>

</xs:appinfo>
</xs:annotation>

</xs:enumeration>
<xs:enumeration value=”1PD”>
<xs:annotation>
<xs:appinfo>
<urss:Definition>

100 Pound Drum.
</urss:Definition>

</xs:appinfo>
</xs:annotation>

</xs:enumeration>
</xs:restriction>

</xs:simpleType>§ ¦
Listing 5: UnitOf-
MeasureTypes tokens in
XSD Schema

¨ ¥
concept ProductQuantity

subConceptOf sumo#
ProductQuantity

hasTokenValue ofType string
hasUnitQuota ofType float
hasUnitType ofType

ProductQuantity

concept Drum subConceptOf {
sumo#FluidContainer,
ProductQuantity}

instance 10KilogramDrum
memberOf Drum

hasTokenValue hasValue ”1KD”
hasUnitQuota hasValue 10
hasUnitType hasValue Kilogram

instance 100PoundDrum
memberOf Drum

hasTokenValue hasValue ”1PD”
hasUnitQuota hasValue 100
hasUnitType hasValue

PoundMass§ ¦
Listing 6: ... and in the
RosettaNet ontology

This style of modelling allows us to further include se-
mantic relations between instances of the same unit type
concept. To define the numerical dependencies between dif-
ferent UnitOfMeasureContentType we add equivalence re-
lations similar to the one shown in listing 7. It states that
a Quantity instance with a certain amount ?z of “100 Pound
Drum” unit types equals 4.5359237 times 10 Kilogram Drums.
Since we have derived a subsumption hierarchy in the trans-
formation step described in section 4.1.3, this axiom applies
to all sub-classes of Quantities, such as ProductQuantity, the
fourth most used type in the RosettaNet schema.

The third most used element FinancialAmount references

a float type for the currency amount and the ucr:Currency
type, which references the ISO 4217 standard on curren-
cies3. The currency identifier is supposed to be entered in
the tokenised string. Similarly to the MeasurementUnitType
ontology we identify the class membership of each currency
in SUMO, and model all currencies as concepts. However,
we can not directly include the semantic relation between
the currencies in the ontology, because naturally exchange
rates are constantly changing. However, we can relate every
currency to two base currencies, the Euro and Dollar and
define a service invocation to retrieve the actual exchange
rate. We have presented a solution to that problem in an
earlier work [11].
¨ ¥
axiom 1PD1KDDependency

definedBy
?x memberOf Quantity and ?x[hasUnitType hasValue

100PoundDrum] and ?y[hasNumericalValue hasValue ?z]
equivalent
?x memberOf Quantity and ?x[hasUnitType hasValue

10KilogramDrum] and ?y[hasNumericalValue hasValue
wsml#numericMultiply(?z1,?z,4.5359237)].§ ¦

Listing 7: Equivalence relation between 100 Pound
Drum and 10 Kilogram Drum

The MonetaryAmount is related to the FinancialAmount
type and only specifies whether the amount is a debit or
credit. Both types do not cause any heterogeneities and are
omitted in our ontologisation.

The ProcessRoleIdentifier references 56 tokens which de-
scribe the role a partner plays in the collaboration. For
every PIP there are a few possible roles specified. However,
such information is of non-functional nature and typically
straightforwardly interpreted with all partners.

RosettaNet supports different ways to specify a certain
datePeriod. One can either use starting and ending times
or the start time and duration. With ontologies supporting
both is straightforward as the logical connections can be
easily represented. We reuse a Date and Time ontology
defined in [17] to explicitly relate different ways of modelling
time.

5. DISCUSSION
We defined outer layer ontologies for the top most occur-

rences of elements in the RosettaNet schema. Based on our
occurrence analysis, the sum of the occurrences of the top
ten most referenced elements including their leaf-nodes ref-
erenced (in case they are not leaf-nodes themselves) in all
fifty XSD-based PIPs, amounts for 23% of the total number
of types. Thus, the semantic relations defined in the outer
layer ontologies presented above, can solve a significant num-
ber of heterogeneities between partners in a dynamic B2B
setting.

The RosettaNet specification includes currently 933 differ-
ent types. To eliminate all possible sources of heterogeneity
one would have to analyse all types and define semantic re-
lations between all ill-defined types. The effort of creating
such a complete SCM ontology is out of scope of a research
effort. However, it is also not realistic to be undertaken by

3See http://www.bsi-global.com/en/Standards-and-
Publications/Industry-Sectors/Services/BSI-Currency-
Code-Service/

any business partner on its own. Every organisation partic-
ipating in a RosettaNet collaboration will have to identify
their most likely sources of heterogeneity and apply an on-
tologisation effort similarly to the one we have described
in section 4.2. The effort of explicitly defining mappings is
cost-effective only to organisations that need to collaborate
with multiple partners. Organisations using only a small
part of existing B2B standards and implement it only with
a limited number of partners can more efficiently encode
mappings in the B2B adapters directly. However, in par-
ticular companies with multiple partner collaborations who
are not able to dictate their standards to partners along the
Supply Chain can benefit by utilising the outer layer ontolo-
gies as described in section 4.2. Such ontologies only need
to be defined once (preferably by the business community),
but can be reused in many business interactions as opposed
to hard-coded rules implemented in every bi-directional col-
laboration.

6. CONCLUSIONS
In this paper we presented a methodology to derive a Sup-

ply Chain Ontology based on the RosettaNet specification.
We extend the ontology with general purpose ontologies in
an attempt to resolve heterogeneities, not structurally and
semantically covered by the RosettaNet specification. We
developed a prototype to mechanically derive a core ontol-
ogy spanning all the XSD schema PIPs, implementing algo-
rithms to reconcile the ontology structure and to generate a
proper subsumption hierarchy. We analysed the occurrence
of all 933 types used throughout the 50 XSD-based Roset-
taNet PIPs and presented outer layer ontologies to account
for the ten most referenced elements. We explicitly defined
the inherent relations between the individual objects of these
types. The solution presented for the outer layer ontologies
amounts for 23% of the total number of types. Thus, the
semantic relations defined in our SCM ontology can already
solve a significant portion of heterogeneities in messages ex-
changed between partners in a dynamic B2B setting.

We envisage further evaluation of our ontology by collect-
ing actual RosettaNet instances and translating them with
our prototype application. This will allow us to compare, if
the amount of heterogeneities as we analysed based on the
element occurrence frequency at schema level accounts for a
similar amount of heterogeneities on its instance level.

Acknowledgments
This material is based upon works supported by the Science
Foundation Ireland under Grant No. SFI/02/CE1/I131 and
No. SFI/04/BR/CS0694. This work is also partly supported
by the Finnish Funding Agency for Technology and Innova-
tion (Tekes).

7. REFERENCES
[1] N. Anicic, N. Ivezic, and A. Jones. An Architecture for

Semantic Enterprise Application Integration
Standards, pp. 25–34. Interoperability of Enterprise
Software and Applications. Springer, 2006.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, 284(5):34–43, 2001.

[3] J. Bosak, T. McGrath, and G. K. Holman. Universal
business language v2.0, Dec. 2006.

[4] D. Brickley and R. V. Guha. RDF Vocabulary
Description Language 1.0: RDF Schema. W3C

Recommendation, 10 February 2004. Available from
http://www.w3.org/TR/rdf-schema/.

[5] J. de Bruijn, et al. The Web Service Modeling
Language WSML. WSML Final Draft D16.1v0.2,
DERI, Oct. 2005. From
http://www.wsmo.org/TR/d16/d16.1/v0.21/.

[6] J. de Bruijn, et al. Web Service Modeling Ontology
(WSMO). Member submission, W3C, 2005. Available
from: http://www.w3.org/Submission/WSMO/.

[7] S. Damodaran. B2B integration over the Internet with
XML: RosettaNet successes and challenges. In
Proceedings of the 13th International World Wide
Web Conference on Alternate track papers & posters,
pp. 188–195. ACM Press, New York, NY, USA, 2004.

[8] S. Damodaran. RosettaNet: Adoption Brings New
Problems, New Solutions. In Proceedings of the XML
2005 Conference, pp. 1–14. Atlanta, USA, 2005.

[9] D. Foxvog and C. Bussler. Ontologizing EDI
Semantics. In Proceedings of the Workshop on
Ontologising Industrial Standards, pp. 301–311.
Springer, Tucson, AZ, USA, 2006.

[10] T. R. Gruber. A translation approach to portable
ontology specifications. Knowledge Acquisition,
5(2):199–229, 1993.

[11] A. Haller, P. Kotinurmi, T. Vitvar, and E. Oren.
Handling heterogeneity in RosettaNet messages. In
Proceedings of the 22nd Annual ACM Symposium on
Applied Computing (SAC), pp. 1368 – 1374. ACM,
Seoul, Korea, Mar. 2007.

[12] M. Hepp. A methodology for deriving OWL ontologies
from products and services categorization standards.
In Proceedings of the 13th European Conference on
Information Systems (ECIS2005), pp. 1–12. 2005b.

[13] G. Klyne and J. J. Carroll. Resource description
framework (RDF): Concepts and abstract syntax.
W3C Recommendation, 10 February 2004. Available
from http://www.w3.org/TR/rdf-concepts/.

[14] I. Niles and A. Pease. Towards a standard upper
ontology. In Proceedings of the International
Conference on Formal Ontology in Information
Systems, pp. 2–9. New York, NY, USA, 2001.

[15] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL
web ontology language semantics and abstract syntax.
W3C Recommendation, 10 February 2004. Available
from http://www.w3.org/TR/owl-semantics/.

[16] S. S. Y. Shim, V. S. Pendyala, M. Sundaram, and
J. Z. Gao. Business-to-Business E-Commerce
Frameworks. IEEE Computer, 33(10):40–47, 2000.

[17] M. Stollberg, et al. Wsmo use case ”virtual travel
agency”. WSMO Working Draft D3.3 v0.1, DERI,
2004. http://www.wsmo.org/2004/d3/d3.3/v0.1/.

[18] D. Trastour, C. Bartolini, and C. Preist. Semantic
Web support for the business-to-business e-commerce
pre-contractual lifecycle. Computer Networks,
42(5):661–673, 2003.

[19] D. Trastour, C. Preist, and D. Coleman. Using
Semantic Web Technology to Enhance Current
Business-to-Business Integration Approaches. In
Proceedings of the 7th International Enterprise
Distributed Object Computing Conference, pp.
222–231. IEEE Computer Society, 2003.

