
A Declarative Recommender System for Cloud
Infrastr ucture Services Selection

Miranda Zhang1, Rajiv Ranjan1, Surya Nepal1, Michael Menzel2, Armin Haller1

1 Information Engineering Laboratory, CSIRO ICT Centre
{miranda.zhang, rajiv.ranjan, surya.nepal, armin.haller}@csiro.au

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
menzel@fzi.de

Abstract. The cloud infrastructure services landscape advances steadily leaving
users in the agony of choice. Therefore, we present CloudRecommender, a new
declarative approach for selecting Cloud-based infrastructure services.
CloudRecommender automates the mapping of users’ specified application
requirements to cloud service configurations. We formally capture cloud
service configurations in ontology and provide its implementation in a
structured data model which can be manipulated through both regular
expressions and SQL. By exploiting the power of a visual programming
language (widgets), CloudRecommender further enables simplified and
intuitive cloud service selection. We describe the design and a prototype
implementation of CloudRecommender, and demonstrate its effectiveness and
scalability through a service configuration selection experiment on most of
today’s prominent cloud providers including Amazon, Azure, and GoGrid.

1. Introduction

Cloud computing [1,2,3] assembles large networks of virtualized services:
infrastructure services (e.g., compute, storage, network, etc.) and software services
(e.g., databases, message queuing systems, monitoring systems, load-balancers, etc.).
It embraces an elastic paradigm in which applications establish on-demand
interactions with services to satisfy required Quality of Service (QoS) including cost,
response time and throughput. However, selecting and composing the right services
meeting application requirements is a challenging problem.

Consider an example of a medium scale enterprise that would like to move its
enterprise applications to cloud. There are multiple providers in the current cloud
landscape that offer infrastructure services in multiple heterogeneous configurations.
Examples include, Amazon [10], Microsoft Azure [12], GoGrid [13], Rackspace,
BitCloud, and Ninefold, among many others. With multiple and heterogeneous
options for infrastructure services, enterprises are facing a complex task when trying
to select and compose a single service type or a combination of service types. Here
we are concerned with simplifying the selection and comparison of a set of
infrastructure service offerings for hosting the enterprise applications and
corresponding dataset, while meeting multiple criteria, such as specific configuration
and cost, emanating from the enterprise’s QoS needs. This is a challenging problem
for the enterprise and needs to be addressed.

Existing approaches in helping a user to compare and select infrastructure services
in cloud computing involve manually reading the provider documentation for finding
out which services are most suitable for hosting an application. This problem is
further aggravated by the use of non-standardized naming terminologies used by
cloud providers. For example, Amazon refers to compute services as EC2 Compute
Unit, while GoGrid refers to the same as Cloud Servers. Furthermore, cloud providers
typically publish their service description, pricing policies and Service-Level-
Agreement (SLA) rules on their websites in various formats. The relevant information
may be updated without prior notice to the users. Hence, it is not an easy task to
manually obtain service configurations from cloud providers’ websites and
documentations (which are the only sources of information).

In order to address the aforementioned problems, we present a semi-automated,
extensible, and simplified approach and system for cloud service selection, called
CloudRecommender. We indentify and formalize the domain knowledge of multiple
configurations of infrastructure services. The core idea in CloudRecommender is to
formally capture the domain knowledge of services using a declarative logic-based
language, and then implement it in a recommender service on top of a relational data
model. Execution procedures in CloudRecommender are transactional and apply well-
defined SQL semantics for querying, inserting, and deleting infrastructure services’
configurations. The CloudRecommender system proposed in this paper leverages the
Web-based widget programming technique that transforms drag and drop operations
to low-level SQL transactions. The contributions of this paper can be summarized as
follows:

- A unified and formalized domain model capable of fully describing
infrastructure services in cloud computing. The model is based and has been
successfully validated against the most commonly available infrastructure
services including Amazon, Microsoft Azure, GoGrid, etc.

- An implementation of a design support system (CloudRecommender) for the
selection of infrastructure cloud service configurations using transactional
SQL semantics, procedures and views. The benefits to users of
CloudRecommender include, for example, the ability to estimate costs,
compute cost savings across multiple providers with possible tradeoffs and
aid in the selection of cloud services.

- A user-friendly service interface based on widgets that maps user
requirements based on form inputs to available infrastructure services,
express configuration selection criteria and view the results.

The remainder of the paper is organized as follows. A discussion on our formal
domain model for cloud infrastructure services and our cloud selection approach
using CloudRecommender is presented in Section 2. Due to space limitation, Section
3 only included a simple experimental evaluation of the proposed approach, but more
details can be found at [20]. A review of related work is provided in Section 4 before
we conclude in Section 5.

2. A System for Cloud Service Selection

We propose an approach and system for cloud service configuration selection,
CloudRecommender. The system includes a repository of available infrastructure
services from different providers including compute, storage and network services, as
shown in figure 1(a). Users can communicate with the system via a Web-based
widget interface. The CloudRecommender system architecture consists of three
layers: the configuration management layer, the application logic layer and the User
interface (widget) layer. Details of each layer will be explained in the following sub-
sections.

Fig 1(b) shows the deployment structure of the CloudRecommender system. For
persistence we have chosen MySQL for its agility and popularity, but any other
relational database can be plugged in. Furthermore, many APIs provided by cloud
providers (such as Amazon) and open source cloud management frameworks (e.g.
jclouds) are written in Java. Thus, Java is chosen as the preferred language to
implement the application logic layer to ease future integration with external libraries.
The widget layer is implemented using a number of JavaScript frameworks including
jQuery, ExtJS and YUI. CloudRecommender also exposes RESTful
(REpresentational State Transfer) APIs (application programming interface) that help
external applications to programmatically compose infrastructure cloud services
based on the CloudRecommender selection process.

Compute
Widget

Storage
Widget

Stored
procedures

Views Constraints

Controller

Widget Layer

Application Logic Layer

Network
Widget

Recommendation
Widget

Configuration Management Layer

Storage ModelCompute Model Network Model

Figure 1. (a) System architecture. (b) Deployment structure.

JDBC

HTTP

«device»
Apache Tomcat 7
Server

Selection

«device»
User's Computer

Web Widgets

«database»
MySQL

«schema»
Cloud Models

2.1 Configuration Management Layer

The configuration layer maintains the basic cloud domain model related to compute,
storage, and network services. We defined a Cloud Computing Ontology to facilitate
the discovery of services based on their functionality and QoS parameters. The
ontology is defined in the Web Ontology Language (OWL) [19] and can be found at:
w3c.org.au/cocoon.owl. All common metadata fields in the ontology like
Organisation, Author, First Name etc. are referenced through standard Web
Ontologies (i.e. FOAF and Dublin Core). To describe specific aspects of cloud
computing, established domain classifications have been used as a guiding reference
[16, 18]. The resulting ontology consists of two parts, the Cloud Service Ontology
and the Cloud QoS Ontology.

Cloud Service Ontology: A CloudService (maps to cloud_service_types in the
relational model in Figure 2) can be of one of the three types, Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS) or Software-as-a-Service (SaaS).
For the CloudRecommender system the cloud infrastructure layer (IaaS),
providing concepts and relations that are fundamental to the other higher-level
layers, is the one currently relevant. Cloud services in the IaaS layer can be
categorised into: Compute, Network, and Storage services (see Table I).
Cloud QoS ontology: At the core of the Cloud QoS ontology is a taxonomy of
ConfigurationParameters and Metrics (Values), i.e. two trees formed using the
RDF(s) subClassOf relation where an Configuration Parameters, for example,
PriceStorage, PriceCompute, PriceDataTransferIn (Out) etc. and a Metric, for
example, ProbabilityOfFailureOnDemand, TransactionalThroughput, are used in
combination to define Cloud QoS capabilities (e.g. features, performance, costs,
etc.). The resulting ontology is a (complex) directed graph where, for example,
the Property hasMetric (and its inverse isMetricOf) is the basic link between the
ConfigurationParameters and Metric trees. For the metrics part of the QoS, we
reference existing QoS ontologies [17] whereas for the ConfigurationParameters
concepts the ontology defines its independent taxonomy, but refers to external
ontologies for existing definitions. Each configuration parameter (see Table I)
has a name, and a value (qualitative or quantitative). The type of configuration
determines the nature of service by means of setting a minimum, maximum, or
capacity limit, or meeting certain value. For example, “RAM capacity”
configuration parameter of a compute service can be set to the value 2GB

For our CloudRecommender service we implemented the Cloud Service Ontology in
a relational model and the Cloud QoS ontology as configuration information as
structured data (entities) (as shown in Figure 2), which can be queried using a SQL-
based declarative language. We collected service configuration information from a
number of public cloud providers (e.g., Windows Azure, Amazon, GoGrid,
RackSpace, Nirvanix, Ninefold, SoftLayer, AT and T Synaptic, Cloud Central, etc.)
to demonstrate the generic nature of the domain model with respect to capturing
heterogeneous configuration (see Table II) information of infrastructure services. Our
model is generic enough to capture all the existing cloud-based infrastructure
services. The proposed model is flexible and extensible enough to accommodate new
services with minimal changes to our implementation. In future work, we also intend
to extend the model with capability to store PaaS and SaaS configurations.

Relationships between concepts representing services are carefully considered and
normalized to avoid update anomalies. Services from various providers often have
very different configurations and pricing models. Distinct and ambiguous
terminologies are often used to describe similar configurations.

Regardless of how providers name their services, we categorize infrastructure
services based on their basic functionality. Unit conversions were performed during
instantiation of concepts. For example, an Amazon EC2 Micro Instance has 613 MB
of memory which is converted to approximately 0.599 GB. Another example is the
CPU clock speed. Amazon refers to it as “ECUs”. From their documentation [10]:
“One EC2 Compute Unit provides the equivalent COMPUTE capacity of a 1.0-1.2
GHz 2007 Opteron or 2007 Xeon processor. This is also the equivalent to an early-
2006 1.7 GHz Xeon processor referenced in our original documentation”. In 2007,
AMD and Intel released both dual-core and quad-core models of the Opteron and
Xeon chips, respectively. So it is obviously not clear what an Amazon EC2 Compute
Unit compares to. To eliminate this ambiguity, we obtained the compute service clock
speed by trying out the actual instance under Linux OS and run “more /proc/cpuinfo”
on it. We’d like to get those kinds of information automatically in the future through
APIs (if available). Table II depicts the configuration ambiguities of compute and
storage services of different providers.

Table I. Infrastructure service types and their configurations.

Figure 2. Conceptual data model representing infrastructure service entities and
their relationships.

Table II. Depiction of configuration heterogeneities in compute and storage services
across providers. (Red) Blank cells in the table mean it is not available. Some providers
offer their services under a different pricing scheme than pay-as-you-go. In Table II we

refer to these schemes as other plans.
Storage Trail

Terminology Unit Terminology Compute Storage Period or Value
Windows Azure Virtual Server /hr Azure Storage 90 day
Amazon EC2 Instance /hr S3 Reserved, Spot, Marketplace Reduced Redundency 1 year

GoGrid Cloud Servers /RAM hr Cloud Storage

Various from time to
time, current value:
100 AUD

RackSpace Cloud Servers /RAM hr Cloud Files
Nirvanix CSN
Ninefold Virtual Server /hr Cloud Storage 50 AUD
SoftLayer Cloud Servers /hr Object Storage Monthly 1 month

AT and T Synaptic Compute as a Service
vCPU per hour +
/RAM hr Storage as a Service

Cloudcentral Cloud Servers /hr

Compute
Provider

SimplePlan

 Committed Allocation Pool

Commitment Plan, Member Offer

Plans other than Pay As You Go

Prepaid (1, 6 or 12 month)
Managed Cloud

Another example of disparity between different Cloud providers is the way in
which “on Demand instances” are priced. GoGrid’s plan, for example, although
having a similar concept to Amazon’s On Demand and Reserved Instance, gives very
little importance to what type or how many of compute services a user is deploying.
GoGrid charges users based on what they call RAM hours – 1 GB RAM compute
service deployed for 1 hour consumes 1 RAM Hour. A 2 GB RAM compute service
deployed for 1 hour consumes 2 RAM Hour. It is worthwhile mentioning that only
Azure clearly states that one month is considered to have 31 days. This is important as
the key advantage of the fine grained pay-as-you-go price model which, for example,
should charge a user the same when they use 2GB for half a month or 1 GB for a
whole month. Other vendors merely give a GB-month price without clarifying how
short term usage is handled. It is neither reflected in their usage calculator. We chose
31 days as default value in calculation.

Table III. Depiction of configuration heterogeneities in request types across storage
services.

Regarding storage services, providers charge for every operation that an
application program or user undertakes. These operations are effected on storage

services via RESTful or SOAP API. Cloud providers refer to the same set of
operations with different names, for example Azure refers to storage service
operations as transactions. Nevertheless, the operations are categorized into upload
and download categories as shown in Table III. Red means an access fee is charged,
green means the service is free, and yellow means it is not specified and usually can
be treated as green/free of charge. To facilitate our calculation of similar and
equivalent requests across multiple providers, we analyzed and pre-processed the
price data, recorded it in our domain model and used a homogenized value in the
repository (configuration management layer). For example, Windows Azure Storage
charges a flat price per transaction. It is considered as transaction whenever there is a
“touch” operation (a Create, Read, Update, Delete (CRUD) operation over the
RESTful service interface) on any component (Blobs, Tables or Queues) of Windows
Azure Storage.

For providers that offer different regional prices, we store the location information
in the price table. If multiple regions have the same price, we choose to combine
them. In our current implementation, any changes to existing configurations (such as
updating memory size, storage provision etc.) of services can be done by executing
customized update SQL queries. We also use customized crawlers to update provider
information’s periodically. However, in future work we will provide a RESTful
interface and widget which can be used for automatic configuration updates.

2.2 Application Logic Layer

The request for service selection in CloudRecommender is expressed as SQL queries.
The selection process supports an application logic that builds upon the following
declarative constructs: criterion, views and stored procedures. The
CloudRecommender builds upon SQL queries which are executed on top of the
relational data model.

Criterion: Criterion is a quantitative or qualitative bound (minimum, maximum,
equal) on the configuration parameters provided by a service. Cloud services’
configuration parameters and their range/values listed in Table I form the basis for
expressing selection goal and criteria (e.g., select a cheapest (goal) compute service
where (criterion) 0<Ram<=20, 0<=local storage<=2040, number of hours to be used
per month = 244). An example query is shown below in Fig 3:

Figure 3: Example query in procedure.

Procedures: We have implemented a number of customized procedures that

automate the service selection process. A number of routines are prepared to process a
user service selection request. List of inputs are stored in a temporary table to be

passed into the procedures. As such, there is no limit to the size of the input list. Final
results are also stored in temporary tables, which are automatically cleared after the
expiration of user session.

Table IV: CloudRecommender Model Parameters.

Notations Meaning
P = {p1, …, pp} Set of p service providers
𝑅𝑅𝑝𝑝𝑖𝑖 = {𝑟𝑟𝑝𝑝𝑖𝑖 ,1, … , 𝑟𝑟𝑝𝑝𝑖𝑖 ,𝑛𝑛 } Regions of provider pi
CS = {cs1, …, csn} Set of n compute services
SS = {ss1, …, ssm} Set of m storage services
TS = {ts1, …, tso} Set of o network (data transfer) services

𝑡𝑡𝑠𝑠𝑖𝑖 ,𝑗𝑗 j-th price tier for a cloud service si ∈ 𝐶𝐶𝐶𝐶 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝑇𝑇𝐶𝐶
𝐶𝐶𝑅𝑅𝑠𝑠𝑖𝑖 = {𝑐𝑐𝑟𝑟𝑠𝑠𝑖𝑖 ,1, … , 𝑐𝑐𝑟𝑟𝑠𝑠𝑖𝑖 ,𝑛𝑛 } Set of criteria related to service si ∈ 𝐶𝐶𝐶𝐶 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝑇𝑇𝐶𝐶
Query A service selection query
N Number of rows in a relational entity
M Number of column in a relational entity

2.3 Computational Complexity of Service Selection Logic

We will discuss the computational complexity of our service selection logic next. For
p providers each with csi(compute) + ssi(storage) + tsi (network) services, the
selection logic has to consisder ∑ csi × ssi × tsi

p
i=1 choices. We give the detailed

discussion of model parameters in Table IV. We can nomally reduce the number of
options significantly in the early stage if a user has strict requirements. In the worst
case scenario, the logic needs to compute a full cross join (cartesian product). The
number of choices varies depending on the number of regions (Rpi) with different
prices offered by each provider (ri), and the number of different price tier (ti) for
each service (Price tier example: AWS S3 charges $0.125 per GB for the first 1 TB /
month of usage, $0.093 for the next 49 TB, etc.). Depending on the estimated usage,
the larger the usage, the more price tiers will be involved. Let us assume that each
provider offers approximately the same service in each region to simplify the
derivation of the computational complexity. As such, the total number of offers can be
represented in a more detailed formula:

 � �∑ 𝑡𝑡𝑙𝑙
𝑐𝑐𝑠𝑠𝑖𝑖
𝑙𝑙=1 �× �∑ 𝑡𝑡𝑚𝑚

 𝑠𝑠𝑠𝑠𝑖𝑖
𝑚𝑚=1 � × �∑ 𝑡𝑡𝑛𝑛

𝑡𝑡𝑠𝑠𝑖𝑖
𝑛𝑛=1 � × 𝑟𝑟𝑖𝑖

𝑝𝑝

𝑖𝑖=1

The queries of the selection logic work as follows. After filtering out criteria-
violating services, resulting services are combined via JOIN operation(s) with final
costs calculated. In worst case scenario where a few or no criteria are defined, the
combination of the services is a full CROSS JOIN over all existing services.
Therefore, the selection queries, to our best knowledge,
have the upper bound computational complexity of

𝑂𝑂𝑞𝑞𝑞𝑞𝑞𝑞𝑟𝑟𝑞𝑞 (|𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑞𝑞𝑡𝑡𝑞𝑞 | � |𝑐𝑐𝑠𝑠𝑖𝑖|
𝑝𝑝

𝑖𝑖=1

× |𝑐𝑐𝑟𝑟𝑠𝑠𝑡𝑡𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠𝑞𝑞 | � |𝑠𝑠𝑠𝑠𝑖𝑖|
𝑝𝑝

𝑖𝑖=1

× |𝑐𝑐𝑟𝑟𝑛𝑛𝑞𝑞𝑡𝑡𝑛𝑛𝑐𝑐𝑟𝑟𝑛𝑛 | � |𝑡𝑡𝑠𝑠𝑖𝑖|
𝑝𝑝

𝑖𝑖=1

)

where 𝑐𝑐𝑟𝑟 are criteria and 𝑐𝑐𝑠𝑠,𝑠𝑠𝑠𝑠 and 𝑡𝑡𝑠𝑠 are pre-computed views with a singular effort

to create the views from JOIN statements. However, in case the database system lacks
support for cached views in a worst case the effort multiplies with the effort of the
views’ JOIN. Modern database can use HASH JOIN O(N + M) and MERGE JOIN
O(N*Log(N) + M*Log(M)) which are faster than O(N * M).

2.4 Widget Layer

This layer features rich set of user-interfaces (see Fig 4) that further simplify the
selection of configuration parameters related to cloud services. This layer
encapsulates the user interface components in the form of four principle widgets
including: Compute, Storage, Network, and Recommendation. The selection of basic
configuration parameters related to compute services including their RAM capacity,
cores, and location can be facilitated through the Compute widget. It also allows users
to search compute services by using regular expressions, sort by a specific column
etc. Using the Compute widget, users can choose which columns to display and
rearrange their order as well. The Storage widget allows users to define configuration
parameters such as storage size and request types (e.g., get, put, post, copy, etc.).
Service configuration parameters, such as the size of incoming data transfer and
outgoing data transfer can be issued via the Network widget. Users have the option to
select single service types as well as bundled (combined search) services driven by
use cases. The selection results are displayed and can be browsed via the
Recommendation widget (not shown in Fig 4).

Figure 4: Screen shot of compute, storage, and network widgets.

3. Experiments and Evaluation

In this section, we present the experiments and evaluation that we undertook.
In our infrastructure service selection scenario, we revisit the example of a medium

scale enterprise we explained earlier. The enterprise wants to migrate its data to the
cloud with the aim of storing and sharing it with other branches through public cloud
storage (note that security issues are dealt within the enterprise applications). At this

stage, we assume the business analyst of the enterprise has a good estimation of the
data storage and transfer (network in/network out) requirements. By using
CloudRecommender, the analyst would like to find out which of the public cloud
providers would be most cost-effective in regards to data storage and transfer costs.
For this selection scenario, the analyst inputs the following anticipated usage
information for the storage and network services: (i) Data size of 50 GB, 1000 copy
requests and 5000 get requests and (ii) data transfer in size of 10 GB and data transfer
out size of 50 GB.

Figure 5: Service selection cr iter ia set by business analyst.

As shown in Fig 5, the analyst specifies service selection criteria via the storage

and network widgets. Programmatically, the above request can also be submitted via
the RESTful service interface of the CloudRecommender as shown below in Fig 6.

Figure 6: An Example REST call.

4. Related Work

Prior to CloudRecommender, there have been a variety of systems that use declarative
logic-based techniques for managing resources in distributed computing systems. The
focus of the authors in work [4] is to provide a distributed platform that enables cloud
providers to automate the process of service orchestration via the use of declarative
policy languages. The authors in [5] present an SQL-based decision query language
for providing a high-level abstraction for expressing decision guidance problems in an
intuitive manner so that database programmers can use mathematical programming
technique without prior experience. We draw a lot of inspiration from the work in [6]
which proposes a data-centric (declarative) framework to orchestrate infrastructure
services. The goal of this work is to improve SLA fulfilment ability of cloud service
providers. COOLDAID [7] presents a declarative approach to manage configuration
of network devices and adopts a relational data model and Datalog-style query
language. NetDB [8] uses a relational database to manage the configurations of

network devices. However, NetDB is a data warehouse, not designed for cloud
service selection and composition. Puppet [9] manages the configuration of data-
centre resources using a custom and user-friendly declarative language for service
configuration specifications. Puppet simplifies the management of data centre
resources for providers. Though branded calculators are available from individual
cloud providers, such as Amazon [14], Azure [15], and GoGrid, for calculating
service leasing cost, it is not easy for users to generalize their requirements to fit
different service offers (with various quota and limitations) let alone computing and
comparing costs. Some of the recent research such as [11] has focused on cloud
storage service (IaaS level) representation based on an XML schema. However, the
proposed declarative model is preferable over hard coding the sorting and selection
algorithm (as used in [11]) as it allows us to take the advantage of optimized SQL
operations (e.g. select and join).

In contrast to the aforementioned systems, CloudRecommender is designed with a
different application domain – one that aims to apply declarative (SQL) and widget
programming technique for solving the cloud service configuration selection problem.
Facing a new challenge of handling heterogeneous service configuration and naming
conventions in cloud computing, CloudRecommender also defines and uses a unified
domain model.

5. Conclusion and Future Work

In this paper, we proposed a declarative system (CloudRecommender) that transforms
the cloud service configuration selection from an ad-hoc process that involves
manually reading the provider documentations to a process that is structured, and to a
large extend automated. Although we believe that CloudRecommender leaves scope
for a range of enhancements, yet provides a practical approach. We have implemented
a prototype of CloudRecommender and evaluated it using an example selection
scenario. The prototype demonstrates the feasibility of the CloudRecommender
design and its practical aspects.

Our future work includes: (1) extending the CloudRecommender to support the
selection of more cloud service types such as PaaS services (e.g., database server, web
server, etc.) to further validate our hypothesis and explore new opportunities; (ii)
exploring integration of cloud service benchmarking databases such as
CloudHarmony to CloudRecommender for facilitating run-time selection based on
dynamic QoS information including throughput, latency, and utilization; and (iii)
deploying and evaluating the CloudRecommender as a REST service so that it can be
easily integrated to any existing cloud service orchestration systems.

Acknowledgments. Initial research on the infrastructure service data models was
done when Dr. Rajiv Ranjan was employed at University of New South Wales
(UNSW) on a strategic eResearch grant scheme.

6. References

1. Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov D
(2009) The Eucalyptus Open-Source Cloud-Computing System. Paper presented at the
Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid

2. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D,
Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53
(4):50-58. doi:10.1145/1721654.1721672

3. Wang L, Ranjan R, Chen J, Benatallah B (2011) Cloud Computing: Methodology,
Systems, and Applications. Taylor & Francis

4. Liu C, Loo BT, Mao Y (2011) Declarative automated cloud resource orchestration. Paper
presented at the Proceedings of the 2nd ACM Symposium on Cloud Computing, Cascais,
Portugal

5. Brodsky A, Bhot MM, Chandrashekar M, Egge NE, Wang XS (2009) A decisions query
language (DQL): high-level abstraction for mathematical programming over databases.
Paper presented at the Proceedings of the 2009 ACM SIGMOD International Conference
on Management of data, Providence, Rhode Island, USA

6. Liu C, Mao Y, Merwe JEVd, Fernández MF Cloud Resource Orchestration: A Data-
Centric Approach. In: The biennial Conference on Innovative Data Systems Research
(CIDR’11), Asilomar, CA, 2011. pp 241-248

7. Chen X, Mao Y, Mao ZM, Merwe JVd (2010) Declarative configuration management for
complex and dynamic networks. Paper presented at the Proceedings of the 6th
International Conference on emerging Networking Experiments and Technologies
(CoNEXT), Philadelphia, Pennsylvania, USA

8. Caldwell D, Gilbert A, Gottlieb J, Greenberg A, Hjalmtysson G, Rexford J (2004) The
cutting EDGE of IP router configuration. SIGCOMM Comput Commun Rev 34 (1):21-26.
doi:10.1145/972374.972379

9. Puppet: A Data Center Automation Solution. http://www.puppetlabs.com/, accessed on 22
June 2012

10. Amazon EC2 Instance Types. http://aws.amazon.com/ec2/instance-types/. Accessed 26
September 2012

11. Ruiz-Alvarez A, Humphrey M (2011) An automated approach to cloud storage service
selection. Paper presented at the Proceedings of the 2nd international workshop on
Scientific cloud computing, San Jose, California, USA

12. Microsoft Azure Cloud. http://www.windowsazure.com/. Accessed 22 June 2012
13. GoGrid Cloud. http://www.gogrid.com/. Accessed 22 June 2012
14. Amazon Price Calculator. http://calculator.s3.amazonaws.com/calc5.html. Accessed 22

June 2012
15. Windows Azure Calculator. http://www.windowsazure.com/en-us/pricing/calculator/,

accessed June 2012
16. Mell P, Grance T (2011) The NIST Definition of Cloud Computing. Gaithersburg
17. Papaioannou IV, Tsesmetzis DT, Roussaki IG, Anagnostou ME A QoS ontology language

for Web-services. In: Advanced Information Networking and Applications, 2006. AINA
2006. 20th International Conference on, 18-20 April 2006 2006. p 6 pp.
doi:10.1109/aina.2006.51

18. Youseff L, Butrico M, Da Silva D Toward a Unified Ontology of Cloud Computing. In:
Grid Computing Environments Workshop, 2008. GCE '08, 12-16 Nov. 2008 2008. pp 1-
10. doi:10.1109/gce.2008.4738443

19. W3C (2009) OWL 2 Web Ontology Language. http://www.w3.org/TR/owl2-overview/
20. Zhang M, Ranjan R, Menzel M, Haller A, Nepal S (2012) A Declarative Recommender

System for Cloud Infrastructure Services Selection. http://arxiv.org/abs/1210.2047

	Introduction
	A System for Cloud Service Selection
	Experiments and Evaluation
	Related Work
	Conclusion and Future Work
	References

